
1

Chapter 25 Macro User’s Manual

This document is the user’s manual of macro module, which describes
syntax, usage, and programming methods of macro commands.

The document includes the following chapters:

 Macro Description
 Macro Usage Description

Value operation and data transform function
Use macro command to control external device

 Macro Commands and PLC Communication (Local Bit, Local Word)
 Macro Operation Instruction
 Notes about Using Macro
 Compiling Error Message

Source Code Examples

2

 Macro Description

1. Constants and Variables
a. Constants

(1) Decimal constant
(2) Hexadecimal constant
(3) ASCII code (character constant)
(4) Boolean: True (not zero), False (zero)

 b. Variables

(1) Naming rules
 A variable must start with an alphabet and no longer than 32 characters.

(2) Variable types
 char. Character (8 bit) variable

bool Boolean(1 bit) variable
short Short integer(16 bit) variable

 int Double word (32 bit)variable
 float Floating point (32 bit) variable

c. Operator

(1) Assignment operator
Assignment operator：=

(2) Arithmetic operators
Addition ： +
Subtraction ： -
Multiplication ： *
Division ： /
Modulo Division： %

(3) Comparison operators
Less than ： <
Less than or equal ： <=
Greater than ： >
Greater than or equal ： >=
Equal ： ==
Not equal ： <>

(4) Logic operators:
Conditional AND ： and

3

Conditional OR ： or
Exclusive OR ： xor
Boolean NOT ： not

(5) Bitwise and shift operators:
(a) Shift operators

 Left shift ： <<
 Right shift ： >>

(b) Bitwise operators
 Bitwise AND ： &
 Bitwise OR ： |
 Bitwise XOR ： ^
 Bitwise complement ： ~

Caution, if you would like to operate the value for Logic operators, please use
Bitwise command.

2. Priority of operators
The process order of many operators within an expression is called the priority of
operators.

 a. Priority of the same kind of operator (From left to right, from up to low)

Arithmetic operator: ^ (* , /) (mod) (+ , -)
Shift operator: From left to right within the expression
Comparison operator: From left to right within the expression
Logic operator: Not And Or Xor,

b. Arithmetic operator is prior to Bitwise operator

 Bitwise operator is prior to Comparison operator
Logic operator is prior to Assignment operator

3. Array
 Only support fixed length, 1-D array which is:
1-D array: Array_Name [Array_Size]

The array size can be integer which from 0 to 4294967295
Minimum of array index = 0
Maximum of array index = Array size – 1
Example : Array[MAX] MAX = 100
Minimum of array index = 0

4

Maximum of array index = 99 (100 – 1)

4. Expression
 a. Operation object
 (1) Constants
 (2) Variables
 (3) Array
 (4) Function
 b. Components of expression
 An expression is combined operation objects with operators by following specific
 rules.

5. Statement
 a. Definition statement
 (1) type name: Define the type of name
 Example: int a，Define variable a as an integer
 (2) type name[constant]: Define the type of array name
 Example: int a[10]，Define variable a as a 1-D array of size 10

 Assignment statement
 The form is ： Variable = Expression
 Example: a = 2

b. Logic statement and branches
 (1) One-line format

if Condition then
 [Statements]

end if

Example:

if a == 2 then
 b = 1

else
 b = 2

end if

5

 (2) Block format
 if Condition then
 [Statements]
 [else [if Condition – n then
 [Else_If_Statements] ….

 [else
 [Else_Statements]]

]]
 end if

Example:

if a == 2 then
 b = 1

else if a == 3
 b = 2

else
 b = 3

end if

 Syntax description

Condition Necessary. This is a control statement. It will be FALSE
when the value of condition is 0; and will be TRUE when
the value of condition is 1.

Statements It is optional in block format statement but necessary in
one-line format without ELSE. The statement will be
executed when the condition is TRUE.

Condition – n Optional. See Condition.
Else_If_Statements Optional in one-line or multi-line format statement. The else

if statement will be executed when the relative Condition –
n is TRUE.

Else_Statements Optional. The else statement will be executed when
Condition and Condition—n are both FALSE.

6

c. Looping control
(1) for–next Statement

 Use this for fixed execution counts. To means increase by step while down
means decrease by step.

 for Counter = Start to end [step Step]
 [Statements]
 next [Counter]

 for Counter = Start down end [step Step]
 [Statements]
 next [Counter]

 Example:

 for a = 0 to 10 step 2
 b = a
 next a

 Syntax description

Counter Necessary. The counter of looping control. It can be
integer or character.

Start Necessary. The initial value of Counter.
End Necessary. The end value of Counter.

Step Optional. The increment/decrement step of Counter. It can
be integer and can be omitted when value is 1.

Statements Optional. Statement block between For and Next which
will be executed fixed counts.

(2) while – wend statement

Loop controlled by Condition. When Condition is TRUE, the statements will
be executed repetitively until the condition turns to FALSE.

while Condition

 [statements]
wend

7

Example:

while a == 2
 b = b + 1
 GetData(a, “Local HMI”, LB, 5, 1)

wend

Syntax description

Condition Necessary. Logic expression which control the execution of
statements.

Statements Optional. Statement block. The statement will be executed
when the condition is TRUE.

(3) break
Used in looping control or select statement. It skips immediately to the end of
the statement.

(4) continue

Used in looping control statement. It quits the current iteration of a loop and
starts the next one.

(5) return
 To stop executing the current method.

Reserved keywords:
The following keywords are reserved for Macro which can not be used in function
name, array name, or variable name.
+ , - ,* , / ,^, mod, >= ,>, < ,<=, <> , == , And, Or, Xor, Not, <<, >>, = , & , |,
^,~,If ,Then, Else, EndIf, Select ,Case ,For, To, Down Step, Next, while, wend break,
continue, return.

8

 Macro usage description
1. Local variables and global variables

a. Local variables: Its value remains valid only within a specific statement.
b. Global variables: Its value always remains valid after declaration.

 When local variable and global variable have the same declaration name, only
the local variable will be valid.

2. Variable and constant initialization

a. Variable initialization
(1) Initialize a value of variable in the declaration statement directly.

Example: int h = 9
(2) Use assignment operator to initialize a value after declaration.

Example: temp = 9
 (3) Array initialization
 Format: int g[10] = { 1,2,3, , 10 }

The initial values are written within the {} and divided by comma (,). These
values are assigned orderly from left to right starting from array index=0.

b. Constans.

 Macro supports:
(1) Decimal integer constant
(2) Hexadecimal integer constant: start with 0x
(3) Character constant,
(4) Boolean constant: True / False,

3. Boolean variables and Boolean expressions

a. Boolean variables:
True or False. Not zero value means TRUE while zero value means FALSE.

 b. Boolean expressions:
The value of Boolean expression is not zero mean TRUE.
The value of Boolean expression is zero mean FALSE.

9

4. Declaration statement
a. Declaration outside a function is a global variable declaration.
b. Declaration inside a function is local variable declaration. This declaration

must at the very beginning of a statement within a function. Other statements before
declaration statements will cause compiler error.

For example：

 macro_command main()
 char i

 i = 9//Assign statement within declaration area causes compiler error
 int g[10]

 for g[2] = 0 to 2
 g[3] = 4
 next g[2]
 end macro_command

5. Function call and passing parameters
a. Function define

The format of function statement is:
 sub Type FunName(Type1 var1, Type2 var2, …, TypeN varN)
 ……..
 return ret
 end sub

 Type is the return datae type，FunName is function name，Type1~TypeN

is the parameter variable type，var1~ varN is parameter, ret is the return
data

For example：

 sub int func(int i)
 int h

 h = i + 10
 …..
 return h

10

 end sub
b. Function call

A function must be defined before its execution. Otherwise, a compiler error
‘Function not defined’ will occur.

 For example：

 macro_command main()
 int i
 i = Func(i) // call an undefined function causes compiler error
 end macro_command

c. Passing parameters
(1) Passing by value through local variable.
(2) Through the same global variables

6. Main Function

 Macro must has one and only one main function which is the execution start
point of Macro. The format is:
macro_command Function_name()

 end macro_command

11

 Value operation and data transform function

(1) Value operation

■ SQRT
 Radical operation
 Syntax SQRT(source, result)

SQRT according to the radical operation of source which is storage in
result, source can be constants or variables, result must be variables.

For example:
macro_command main()

float source, result

SQRT(15, result)

GetData(source, "Local HMI", LW, 0, 1)// source == 9.0

SQRT(source, result)// result == 3.0

SetData(result, "Local HMI", LW, 0, 1)

end macro_command

■ SIN
 Sine operation
 Syntax SIN(source, result)

SIN according to the sine operation of source which is storage in result,
source is angle value and can be constants or variables, result must be
variables.

For example:
macro_command main()

float source, result

SIN(90, result)// result == 1

GetData(source, "Local HMI", LW, 0, 1)

12

SIN(source, result)
// source == 30 => result == 0.5

SetData(result, "Local HMI", LW, 0, 1)

end macro_command

■ COS
 Cosine operation
 Syntax COS(source, result)

COS according to the cosine operation of source which is storage in
result, source is angle value and can be constants or variables, result
must be variables.

For example:
macro_command main()

float source, result

COS(90, result)// result == 0

GetData(source, "Local HMI", LW, 0, 1)

COS(source, result)
// source == 60 => result == 0.5

SetData(result, "Local HMI", LW, 0, 1)

end macro_command

■ TAN
 Tangent operation
 Syntax TAN(source, result)

TAN according to the tangent operation of source which is storage in
result, source is angle value and can be constants or variables, result
must be variables.

For example:
macro_command main()

13

float source, result

TAN(45, result)// result == 1

GetData(source, "Local HMI", LW, 0, 1)

TAN(source, result)
// source == 60 => result == 1.732

SetData(result, "Local HMI", LW, 0, 1)

end macro_command

■ COT

Cotangent operation
 Syntax COT(source, result)

COT according to the cotangent operation of source which is storage in
result, source is angle value and can be constants or variables, result
must be variables.

For example:
macro_command main()

float source, result

COT(45, result)// result == 1

GetData(source, "Local HMI", LW, 0, 1)

COT(source, result)
// source == 60 => result == 0.5774

SetData(result, "Local HMI", LW, 0, 1)

end macro_command

■ SEC

Secant operation

14

 Syntax SEC(source, result)
SEC according to the secant operation of source which is storage in
result, source is angle value and can be constants or variables, result
must be variables.

For example:
macro_command main()

float source, result

SEC(45, result)// result == 1.414

GetData(source, "Local HMI", LW, 0, 1)

SEC(source, result)
// source == 60 => result == 2

SetData(result, "Local HMI", LW, 0, 1)

end macro_command

■ CSC

Cosecant operation
 Syntax SEC(source, result)

CSC according to the cosecant operation of source which is storage in
result, source is angle value and can be constants or variables, result
must be variables.

For example:
macro_command main()

float source, result

CSC(45, result)// result == 1.414

GetData(source, "Local HMI", LW, 0, 1)

CSC(source, result)
// source == 30 => result == 2

15

SetData(result, "Local HMI", LW, 0, 1)

end macro_command

■ ASIN

The inverse function of sine operation
 Syntax ASIN(source, result)

ASIN according to the inverse function of sine operation of source
which is storage in result, source can be constants or variables, result is
angle value and must be variables.

For example:
macro_command main()

float source, result

ASIN(0.8660, result)// result == 60

GetData(source, "Local HMI", LW, 0, 1)

ASIN(source, result)
// source == 0.5 => result == 30

SetData(result, "Local HMI", LW, 0, 1)

end macro_command

■ ACOS

The inverse function of cosine operation
 Syntax ACOS(source, result)

ACOS according to the inverse function of cosine operation of source
which is storage in result, source can be constants or variables, result is
angle value and must be variables.

For example:
macro_command main()

float source, result

16

ACOS(0.8660, result)// result == 30

GetData(source, "Local HMI", LW, 0, 1)

ACOS(source, result)
// source == 0.5 => result == 60

SetData(result, "Local HMI", LW, 0, 1)

end macro_command

■ ATAN

The inverse function of tangent operation
 Syntax ATAN(source, result)

ATAN according to the inverse function of tangent operation of source
which is storage in result, source can be constants or variables, result is
angle value and must be variables.

For example:
macro_command main()

float source, result

ATAN(1, result)// result == 45

GetData(source, "Local HMI", LW, 0, 1)

ATAN(source, result)
// source == 1.732 => result == 60

SetData(result, "Local HMI", LW, 0, 1)

end macro_command

■ RAND
 A random value
 Syntax RAND(result)

17

When use RAND(), RAND will to appear a random value, then storage
the value in result and it must be variables.

For example:
macro_command main()

short random

RAND(random)

SetData(random, "Local HMI", LW, 120, 1)

end macro_command

(2) Value transformation

■ BIN2BCD
Transform decimal system value into BCD value

 Syntax BIN2BCD(source, result)
BIN2BCD according to the decimal system to transform into BCD of
source which is storage in result, source can be constants or variables,
result must be variables.

For example:
macro_command main()

short source, result

BIN2BCD(1234, result)// result == 0x1234

GetData(source, "Local HMI", LW, 4, 1)

BIN2BCD(source, result)
// source == 5678 => result == 0x5678

SetData(result, "Local HMI", LW, 6, 1)

end macro_command

18

■ BCD2BIN

Transform BCD value into decimal system value
 Syntax BCD2BIN(source, result)

BCD2BIN according to the BCD to transform into decimal system of
source which is storage in result, source can be constants or variables,
result must be variables.

For example:
macro_command main()

short source, result

BCD2BIN(0x1234, result)// result == 1234

GetData(source, "Local HMI", LW, 4, 1)

BCD2BIN(source, result)
// source == 0x5678 => result == 5678

SetData(result, "Local HMI", LW, 6, 1)

end macro_command

■ DEC2ASCII

Transform decimal system value into ASCII
 Syntax DEC2ASCII(source, result[start], no)

DEC2ASCII according to the decimal system to transform into ASCII
of source which is sequence storage in result[], no is to be transformed
character. The first character storage in result[start], the second
character storage in result[start + 1], the last character storage in
result[start + (no – 1)].
Source of no can be constants or variables, result must be matrix type
variables.

For example:
macro_command main()

short source

19

char result[4]

GetData(source, "Local HMI", LW, 30, 1)

DEC2ASCII(source, result[0], 4)// no. of ASCII == 4
// source == 5678 =>
// result[0] == '5', result[1] == '6', result[2] == '7', result[3] == '8'

SetData(result[0], "Local HMI", LW, 40, 4)// write 4 bytes == 2 words

end macro_command

For variables type of result is char (size is byte), when to execute above
the example, LW storage contents as follow：

[LW40] == 0x3635
[LW41] == 0x3837

When to change variables type of result into short (size is word)

macro_command main()

short source
short result[4]

GetData(source, "Local HMI", LW, 30, 1)

DEC2ASCII(source, result[0], 4)// no. of ASCII == 4
// source == 5678 =>
// result[0] == '5', result[1] == '6', result[2] == '7', result[3] == '8'

SetData(result[0], "Local HMI", LW, 40, 4) // write 4 words

end macro_command

When to execute above the example, LW storage contents as follow：

20

[LW40] == 0x0035 (==‘5’)
[LW41] == 0x0036 (==‘6’)
[LW42] == 0x0037 (==‘7’)
[LW43] == 0x0038 (==‘8’)

When to change variables type of result into int (size is double words)

macro_command main()

short source
int result[4]

GetData(source, "Local HMI", LW, 30, 1)

DEC2ASCII(source, result[0], 4)// no. of ASCII == 4
// source == 5678 =>
// result[0] == '5', result[1] == '6', result[2] == '7', result[3] == '8'

SetData(result[0], "Local HMI", LW, 40, 4) // write 4 double words

end macro_command

When to execute above the example, LW storage contents as follow：

[LW40] == 0x0035 (==‘5’)
[LW41] == 0x0000
[LW42] == 0x0036 (==‘6’)
[LW43] == 0x0000
[LW44] == 0x0037 (==‘7’)
[LW45] == 0x0000
[LW46] == 0x0038 (==‘8’)
[LW47] == 0x0000

■ HEX2ASCII

Transform hexadecimal system value into ASCII
 Syntax HEX2ASCII(source, result[start], no)

21

HEX2ASCII according to the hexadecimal system to transform into
ASCII of source which is sequence storage in result[], no is to be
transformed character. The first character storage in result[start], the
second character storage in result[start + 1], the last character storage
in result[start + (no – 1)].
Source of no can be constants or variables, result must be matrix type
variables.

For example:
macro_command main()

short source
char result[4]

GetData(source, "Local HMI", LW, 30, 1)

HEX2ASCII(source, result[0], 4)// no. of ASCII == 4
// source == 0x5678
// result[0] == '5', result[1] == '6', result[2] == '7', result[3] == '8'

SetData(result[0], "Local HMI", LW, 40, 4)// write 4 bytes == 2 words

end macro_command

For variables type of result is char (size is byte), when to execute above
the example, LW storage contents as follow：

[LW40] == 0x3635
[LW41] == 0x3837

■ ASCII2DEC

Transform ASCII into decimal system value
 Syntax ASCII2DEC(source[start], result, no)

ASCII2DEC according to source[] value that ASCII to transform into
decimal system of source which is storage in result, the first character
storage in source[start], the second character storage in source[start +

22

1], the last character storage in source[start + (no – 1)], no is to be
transformed character.
Source must be matrix type variables, result must be variables and no
can be constants or variables.

For example:
 macro_command main()

 char source[4]
 short result

 GetData(source[0], "Local HMI", LW, 80, 4)

 ASCII2DEC(source[0], result, 4)
 // source[0] = '5', source[1] = '6', source[2] = '7', source[3] = '8' =>
 // result == 5678

 SetData(result, "Local HMI", LW, 90, 1)

 end macro_command

 When to execute as follow example, result are equal to 5678

macro_command main()

char source[4]
short result

source[0] = '5'
source[1] = '6'
source[2] = '7'
source[3] = '8'

ASCII2DEC(source[0], result, 4) // result == 5678

SetData(result, "Local HMI", LW, 90, 1)

end macro_command

23

■ ASCII2HEX

Transform ASCII into hexadecimal system value
 Syntax ASCII2HEX(source[start], result, no)

ASCII2HEX according to source[] value that ASCII to transform into
hexadecimal system of source which is storage in result, the first
character storage in source[start], the second character storage in
source[start + 1], the last character storage in source[start + (no – 1)],
no is to be transformed character.
Source must be matrix type variables, result must be variables and no
can be constants or variables.

For example:
 macro_command main()

 char source[4]
 short result

 GetData(source[0], "Local HMI", LW, 80, 4)

 ASCII2HEX(source[0], result, 4)
 // source[0] = '5', source[1] = '6', source[2] = '7', source[3] = '8' =>
 // result == 0x5678

 SetData(result, "Local HMI", LW, 90, 1)

 end macro_command

(3) Value manipulation

■ FILL
Input specific value into variables

 Syntax FILL(source[start], sign, no)
FILL according to variables of source[start] to source[start + (no –
1)]sequence setting to sign. Source must be variables, sign can be
constants or variables, no is to be set sum of variables and can be
constants or variables.

For example:
macro_command main()

24

char result[4]
char sign

GetData(sign, "Local HMI", LW, 110, 1)

FILL(result[0], 0x31, 2)
// result[0] == 0x31, result[1] == 0x31

FILL(result[0], sign, 4)
// result[0] == result[1] == result[2] == result[3] == sign

SetData(result[0], "Local HMI", LW, 115, 4)// write 4 bytes == 2
words

 end macro_command

Above the example, variables type of result is char (size is byte), if
sign is 0x35, then to execute MACRO, LW storage contents as
follow：

[LW115] == 0x3535
[LW116] == 0x3535

 When to change variables type of result into short (size is word)：

macro_command main()

short result[4]
char sign

GetData(sign, "Local HMI", LW, 110, 1)

FILL(result[0], sign, 4)
// result[0] == result[1] == result[2] == result[3] == sign

SetData(result[0], "Local HMI", LW, 115, 4)// write 4 words

25

 end macro_command

Then to execute MACRO(if sign is 0x35)，LW storage contents as
follow：

[LW115] == 0x0035
[LW116] == 0x0035
[LW117] == 0x0035
[LW118] == 0x0035

■ SWAPB

To exchange the data of high bye with low byte
 Syntax SWAPB(source, result)

SWAPB according to that exchange high byte with low byte of source
which is storage in result. Source can be constants or variables, result
must be variables.

For example:
macro_command main()

short source, result

SWAPB(0x5678, result)// result == 0x7856

GetData(source, "Local HMI", LW, 125, 1)

SWAPB(source, result)
// source == 0x1234 => result == 0x3412

SetData(source, "Local HMI", LW, 125, 1)

end macro_command

■ SWAPW

To exchange the data of high word with low word
 Syntax SWAPW(source, result)

26

SWAPW according to that exchange high word with low word of source
which is storage in result. Source can be constants or variables, result
must be variables.

For example:
macro_command main()

int source, result

GetData(source, "Local HMI", LW, 130, 1)

SWAPW(source, result)
// source == 0x12345678 => result == 0x56781234

SetData(result, "Local HMI", LW, 130, 1)

end macro_command

■ LOBYTE

Read value’s low byte
 Syntax LOBYTE(source, result)

LOBYTE according to that read value’s low byte of source which is
storage in result. Source can be constants or variables, result must be
variables.

For example:
macro_command main()

short source, result

LOBYTE(0x1234, result)// result == 0x34

GetData(source, "Local HMI", LW, 140, 1)

LOBYTE(source, result)
// source == 0x1234 => result == 0x34

SetData(result, "Local HMI", LW, 140, 1)

27

end macro_command

■ HIBYTE

Read value’s high byte
 Syntax HIBYTE(source, result)

HIBYTE according to that read value’s high byte of source which is
storage in result. Source can be constants or variables, result must be
variables.

For example:
macro_command main()

short source, result

HIBYTE(0x1234, result)// result == 0x12

GetData(source, "Local HMI", LW, 140, 1)

HIBYTE(source, result)
// source == 0x1234 => result == 0x12

SetData(result, "Local HMI", LW, 140, 1)

end macro_command

■ LOWORD

Read value’s low word
 Syntax LOWORD(source, result)

LOWORD according to that read value’s low word of source which is
storage in result. Source can be constants or variables, result must be
variables.

For example:
macro_command main()

int source, result

28

LOWORD(0x12345678, result)// result == 0x5678

GetData(source, "Local HMI", LW, 140, 1)

LOWORD (source, result)
// source == 0x12345678 => result == 0x5678

SetData(result, "Local HMI", LW, 140, 1)

end macro_command

■ HIWORD

Read value’s high word
 Syntax HIWORD(source, result)

HIWORD according to that read value’s high word of source which is
storage in result. Source can be constants or variables, result must be
variables.

For example:
macro_command main()

int source, result

HIWORD(0x12345678, result)// result == 0x1234

GetData(source, "Local HMI", LW, 140, 1)

HIWORD (source, result)
// source == 0x12345678 => result == 0x1234

SetData(result, "Local HMI", LW, 140, 1)

end macro_command

(4) Bit manipulation

■ GETBIT

29

Read value that appointed bit position state
 Syntax GETBIT(source, result, bit_pos)

GETBIT according to that bit_pos to appoint bit position state of source
which is storage in result, result’s value is 0 or 1. Source of bit_pos can
be constants or variables, result must be variables.

For example:
macro_command main()

int source, result
short bit_pos

GetData(source, "Local HMI", LW, 180, 1)
GetData(bit_pos, "Local HMI", LW, 182, 1)

GETBIT(source, result, bit_pos)
// source == 4, bit_pos == 0 => result = 0
// source == 4, bit_pos == 1 => result = 0
// source == 4, bit_pos == 2 => result = 1

SetData(result, "Local HMI", LW, 183, 1)

end macro_command

■ SETBITON

Set bit position state to 1
 Syntax SETBITON(source, result, bit_pos)

SETBITON according to content of source can change the bit_pos state
to 1, then storage in result. Source of bit_pos can be constants or
variables, result must be variables.

For example:
macro_command main()

int source, result
short bit_pos

30

GetData(source, "Local HMI", LW, 180, 1)
GetData(bit_pos, "Local HMI", LW, 182, 1)

SETBITON(source, result, bit_pos)
// source == 4, bit_pos = 1 => result == 6

SetData(result, "Local HMI", LW, 180, 1)

end macro_command

■ SETBITOFF

Set bit position state to 0
 Syntax SETBITOFF(source, result, bit_pos)

SETBITOFF according to content of source can change the bit_pos state
to 0, then storage in result. Source of bit_pos can be constants or
variables, result must be variables.

For example:
macro_command main()

int source, result
short bit_pos

GetData(source, "Local HMI", LW, 180, 1)
GetData(bit_pos, "Local HMI", LW, 182, 1)

SETBITOFF(source, result, bit_pos)
// source == 6, bit_pos = 1 => result == 4

SetData(result, "Local HMI", LW, 180, 1)

end macro_command

■ INVBIT

Set bit position state to inverse

31

 Syntax INVBIT(source, result, bit_pos)
INVBIT according to content of source can change the bit_pos state to
inverse, then storage in result. Source of bit_pos can be constants or
variables, result must be variables.

For example:
macro_command main()

int source, result
short bit_pos

GetData(source, "Local HMI", LW, 180, 1)
GetData(bit_pos, "Local HMI", LW, 182, 1)

INVBIT(source, result, bit_pos)
// source == 6, bit_pos = 1 => result == 4
// source == 4, bit_pos = 1 => result == 6

SetData(result, "Local HMI", LW, 180, 1)

end macro_command

(5) Communication

■ DELAY
Delay setting time, then to execute the order.

 Syntax DELAY(time)
When use DELAY function, HMI will delay setting time, then to execute
MACRO, the unit of time is ms and can be constants or variables.

For example:

macro_command main()

char s[100]
int a = 5000// ms
s[0] = 'a'
s[1] = 'b'
s[2] = 'c'

32

s[2] = 'd'

DELAY(a)
DELAY(4000)// delay 4000ms

SetData(s[0], "Local HMI", LW, 0, 3)

end macro_command

■ ADDSUM

Use addition to figure out checksum
 Syntax ADDSUM(source[start], result, no)

ADDSUM according to add up variables of source[start] to
source[start + (no – 1)], then storage in result. Source and result must
be variables, no is sum of variables and can be constants or variables.

For example:

 macro_command main()
 char data[5]

 short checksum

 data[0] = 0x1
 data[1] = 0x2
 data[2] = 0x3
 data[3] = 0x4
 data[4] = 0x5

 ADDSUM(data[0], checksum, 5)

 end macro_command

■ XORSUM

Use XOR to figure out checksum
 Syntax XORSUM(source[start], result, data_count)

XORSUM according to value of source[start] to source[start +
(data_count – 1)], use XOR to figure out checksum, then storage in

33

result. Source and result must be variables, data_count is sum of
variables and can be constants or variables.

For example:

 macro_command main()
 char data[5]

 short checksum

 data[0] = 0x1
 data[1] = 0x2
 data[2] = 0x3
 data[3] = 0x4
 data[4] = 0x5

 XORSUM(data[0], checksum, 5)

 end macro_command

■ CRC

16 bit CRC operation
 Syntax CRC(source[start], result, data_count)

CRC according to value of source[start] to source[start + (data_count –
1)] to figure out 16 bit CRC, then storage in result. Source and result
must be variables, data_count is sum of count and can be constants or
variables.

For example:

 macro_command main()
 char data[5]

 short 16bit_CRC

 data[0] = 0x1
 data[1] = 0x2
 data[2] = 0x3
 data[3] = 0x4
 data[4] = 0x5

34

 CRC(data[0], 16bit_CRC, 5)

 end macro_command

■ OUTPORT

From communication port (COM port or Ethernet) to output data
 Syntax OUTPORT(source[start], device_name, data_count)

OUTPORT according to communication port defined by device_name,
source[start] to source[start + (data_count – 1)] of value sequence
output, source must be variables and data_count must be constants.
device_name must be Free Protocol, as follow:

For example:

If ”MODBUS RTU Device” has be defined in device table, and set
COM 1 for communication port, as follow example will show that how
to use OUTPORT function to setting the MODBUS RTU device state.

35

// Write Single Coil (ON)
macro_command main()

char command[32], response[32]
short address, checksum
short i, return_value

FILL(command[0], 0, 32)// init
FILL(response[0], 0, 32)

command[0] = 0x1// station no
command[1] = 0x5// write signle coil

address = 0
HIBYTE(address, command[2])
LOBYTE(address, command[3])

command[4] = 0xff// force bit on
command[5] = 0

CRC(command[0], checksum, 6)

LOBYTE(checksum, command[6])
HIBYTE(checksum, command[7])

// send command
OUTPORT(command[0], "MODBUS RTU Device", 8)
// read response
INPORT(response[0], "MODBUS RTU Device", 8, return_value)

// return_value == 0 -> error
SetData(return_value, "Local HMI", LW, 0, 1)
SetData(response[0], "Local HMI", LW, 10, 8)// send response to LW

end macro_command

36

■ INPORT
From communication port (COM port or Ethernet) to read data

 Syntax INPORT(source[start], device_name, read_count, return_value)
INPORT according to communication port defined by device_name to read
data, then storage in source[].
INPORT requests quantity of read data is connect with variables type
of source and read_count, for example

char data[10]
INPORT(data[0], “device”, 10, return_value)

Foe variable type of data is char, the length of char is 1 byte, INPORT()
read 10 * 1= 10 byte data.

If variables type of data is short, as follow：

short data[10]
INPORT(data[0], “device”, 10, return_value)

For the length of short is 2 bytes, INPORT() read 10 * 2= 30 byte data.

device_name must be Free Protocol.
When to finish INPORT() function, quantity of read data storage in
return_value, unit is byte.

[Execute fail]

If return_value is 0, HMI unable to read data that defined by
read_count after timeout.

Timeout of INPORT() function must defined by device table, as
follow:

37

For example:
If ”MODBUS RTU Device” has be defined in device table, and set
COM 1 for communication port, as follow will show that how to use
OUTPORT function to read the MODBUS RTU device state.

// Read Holding Registers
macro_command main()

char command[32], response[32]
short address, checksum
short read_no, return_value, read_data[2], i

FILL(command[0], 0, 32)// init
FILL(response[0], 0, 32)

command[0] = 0x1// station no
command[1] = 0x3// read holding registers

address = 0
HIBYTE(address, command[2])
LOBYTE(address, command[3])

read_no = 2// read 4x1_1, 4x1_2
HIBYTE(read_no, command[4])
LOBYTE(read_no, command[5])

38

CRC(command[0], checksum, 6)

LOBYTE(checksum, command[6])
HIBYTE(checksum, command[7])

// send command
OUTPORT(command[0], "MODBUS RTU Device", 8)
// read response
INPORT(response[0], "MODBUS RTU Device", 9, return_value)

// return_value == 0 -> error
SetData(return_value, "Local HMI", LW, 0, 1)
SetData(response[0], "Local HMI", LW, 10, 9)// send response to LW

if return_value > 0 then
 read_data[0] = response[4] + (response[3] << 8)// 4x1_1
 read_data[1] = response[6] + (response[5] << 8)// 4x1_2

 SetData(read_data[0], "Local HMI", LW, 100, 2)
end if

 end macro_command

39

 Use macro command to control external device

When HMI is not support user’s device, user can use macro command “OUTPORT”
and “INPORT” to control those devices.
First, user has to new a device “Free Protocol” in system parameter, for example, this
device is using COM1, and communicating parameter is 19200, E, 8, 1 and is named
“MODBUS RTU Device” as below illustration.

The device can be used Ethernet interface, for example, to use MODBUS TCP/IP, at
this time, the PLC I/F is Ethernet and setting IP address and port no. as below
illustration.

To read 4x_1, 4x_2 value, first user has to use OUTPORT command to ask read
command from device, the syntax is
OUTPORT(command[start], device_name, cmd_count)

40

If this device is used MODBUS RTU protocol, user has to refer content of MODBUS
RTU protocol for writing the command in the macro.
We use ”Reading Holding Registers (0x03)” command in MODBUS RTU protocol to
read value of 4x_1, 4x_2.
Below illustration is part of the content of protocol (No show the station no.- byte 0
and CRC- latest two bytes here).

According to the protocol, the content of command as following, total is 8 bytes：

command[0] : Station no. (BYTE 0)
command[1] : Command (BYTE 1)
command[2] : Address high byte (BYTE 2)
command[3] : Address low byte (BYTE 3)
command[4] : Read value high byte (BYTE 4)
command[5] : Read value low byte (BYTE 5)
command[6] : 16-bit CRC low byte (BYTE 6)
command[7] : 16-bit CRC high byte (BYTE 7)

The content of Macro as following,

char command[32]
short address, checksum

FILL(command[0], 0, 32)// Setting command[0]~command[31] to 0

command[0] = 0x1// station no
command[1] = 0x3// read holding registers

41

address = 0// start from 4x_1 and read two words, the initial address of 4x_1 is 0
HIBYTE(address, command[2])
LOBYTE(address, command[3])

read_no = 2// Read 4x_1 and 4x_2, total is 2 words
HIBYTE(read_no, command[4])
LOBYTE(read_no, command[5])

CRC(command[0], checksum, 6)// Calculating 16-bit CRC

LOBYTE(checksum, command[6])
HIBYTE(checksum, command[7])

Use OUPORT to send the command

OUTPORT(command[0], "MODBUS RTU Device", 8)// send command

Use INPORT command to read the response of device. According to the content of
protocol, total 9 bytes.

command[0] : Station no. (BYTE 0)
command[1] : Command (BYTE 1)
command[2] : Read byte number of value (BYTE 2)
command[3] : 4x_1 high byte (BYTE 3)
command[4] : 4x_1 low byte (BYTE 4)
command[5] : 4x_2 high byte (BYTE 5)
command[6] : 4x_2 low byte (BYTE 6)
command[7] : 16-bit CRC high byte (BYTE 7)
command[8] : 16-bit CRC low byte (BYTE 8)

The content of INPORT command as following,

INPORT(response[0], "MODBUS RTU Device", 9, return_value)// read response

return_value is for record the byte number of INPORT, if return_value is 0, that
means false to read.

42

According to the content of protocol, response[1] is equal to 0x3, that means the
correct response of device. If response is correctly, after got the value of 4x_1 and
4x_2, the result will set and display on LW100 and LW101.

if (return_value >0 and response[1] == 0x3) then
 read_data[0] = response[4] + (response[3] << 8)// 4x_1
 read_data[1] = response[6] + (response[5] << 8)// 4x_2

 SetData(read_data[0], "Local HMI", LW, 100, 2)
end if

The whole procedure as following,

// Read Holding Registers
macro_command main()

char command[32], response[32]
short address, checksum
short read_no, return_value, read_data[2], i

FILL(command[0], 0, 32)// init
FILL(response[0], 0, 32)

command[0] = 0x1// station no
command[1] = 0x3// read holding registers

address = 0
HIBYTE(address, command[2])
LOBYTE(address, command[3])

read_no = 2// read 4x_1, 4x_2
HIBYTE(read_no, command[4])
LOBYTE(read_no, command[5])

CRC(command[0], checksum, 6)

LOBYTE(checksum, command[6])
HIBYTE(checksum, command[7])

43

OUTPORT(command[0], "MODBUS RTU Device", 8)// send command
INPORT(response[0], "MODBUS RTU Device", 9, return_value)// read response

SetData(return_value, "Local HMI", LW, 0, 1)// return_value == 0 -> error
SetData(response[0], "Local HMI", LW, 10, 9)// send response to LW

if (return_value > 0 and response[1] == 0x3) then
 read_data[0] = response[4] + (response[3] << 8)// 4x_1
 read_data[1] = response[6] + (response[5] << 8)// 4x_2

 SetData(read_data[0], "Local HMI", LW, 100, 2)
end if

end macro_command

Below example is to describe how to set ON or OFF in 0x_1, the illustration is a part
of content of protocol (No show the station no.- byte 0 and CRC- latest two bytes
here). This is use command of ”Write Single Coil(0x5)”：

First, to use OUTPORT command to send a request to the device, according to the
command of protocol, the content of command[] as following,

char command[32]

FILL(command[0], 0, 32)// init

44

command[0] = 0x1// station no
command[1] = 0x5// write signle coil

address = 0// Set address 0, first bit (0x_1)
HIBYTE(address, command[2])
LOBYTE(address, command[3])

command[4] = 0xff// force 0x_1 on
command[5] = 0

CRC(command[0], checksum, 6)

LOBYTE(checksum, command[6])
HIBYTE(checksum, command[7])

OUTPORT(command[0], "MODBUS RTU Device", 8)// send command

After sending command, use INPORT to read the result of setting, according to the
content of protocol, total has to read 8 bytes.

INPORT(response[0], "MODBUS RTU Device", 8, return_value)// read response

The whole procedure as following,

// Write Single Coil (ON)
macro_command main()

char command[32], response[32]
short address, checksum
short i, return_value

FILL(command[0], 0, 32)// init
FILL(response[0], 0, 32)

45

command[0] = 0x1// station no
command[1] = 0x5// write single coil

address = 0
HIBYTE(address, command[2])
LOBYTE(address, command[3])

command[4] = 0xff// force 0x_1 on
command[5] = 0

CRC(command[0], checksum, 6)

LOBYTE(checksum, command[6])
HIBYTE(checksum, command[7])

OUTPORT(command[0], "MODBUS RTU Device", 8)// send command
INPORT(response[0], "MODBUS RTU Device", 8, return_value)// read response

SetData(return_value, "Local HMI", LW, 0, 1)// return_value == 0 -> error
SetData(response[0], "Local HMI", LW, 10, 8)// send response to LW

end macro_command

46

 Macro command and PLC communication (LocalBit, LocalWord):

Usage：Communicate with PLC through a function library
In the command program, Macro can communicate with data in the PLC. The
function GetData(…) can receive data from the PLC through EasyView. The
function SetData(…) can set data to the PLC through EasyView. The Macro
command handles the communication details.

1. GetData(Supported data types: DestData,

 char* szPLCName，
 char* szDeviceType，
 int nAddress,
 int nDataCount)

Description
 Get data from PLC
Parameters：
 DestData The address of data to get
 szPLCName PLC name
 szDeviceType PLCtype and encoding method of PLC address
 nAddress The address of PLC
 nDataCount Number of data
Return value:
 None

szPLCName
 Set the PLC operation object, identify the plc name by use the double quotation
marks, those name have been defined in the Device List of System
rameter.Example:”FATEK FB Series”，See the following graph, If use the name
never been defined in the Device List,will will cause compiler error.
The name of HMI is fixed as “Local HMI”.

47

strDeviceType Format

 AAA_BBB

 AAA is the register name in the PLC. Example: LB or LW, BBB means the
format data (BIN or BCD).

 For example: if strDeviceType is LB_BIN，It means the register is LB and the
format is BIN.
 If use BIN format, ”_BIN” can be ignored，Example: LW_BIN is equal to
LW，They both mean the register is LW and the format is BIN.

NAddress format

 N#AAAAA

N means the station number of PLC，range is from 0 to 255. If use the default station
number in system parameter, ’N#’ can be canceled,；AAAAA is the address of
PLC register.

 For example: if strAddress is 2#10，It means the station number of plc is 2,the
address of plc register is 10. So the function GetData(a, “DELTA DVP”, M, 2#10, 1)
means that read the data in the address M10 of “DELTA DVP” No.2 PLC.
 If strAddress is，’N#’ is canceled，Now It will use the default station number
of system parameter. See the following graph，now the default number is 2。

48

For example:

bool a
bool b[30]
short c
short d[50]
int e
int f[10]
double g[10]

// read the state of LB2，and save in variable a
GetData(a, “Local HMI”, LB, 2, 1)

// Read the total 30 states of LB0~LB29, and save in variables b[0]~b[29]
GetData(b[0], “Local HMI”, LB, 0, 30)

// Read one word data from LW2，and save in variable c
GetData(c, “Local HMI”, LW, 2, 1)

// Read total 50 word datas from LW0~LW49, and save in variables d[0]~d[49].
GetData(d[0], “Local HMI”, LW, 0, 50)

// Read one double word from LW6 ,and save in variable e
// note：the type of e is int
GetData(e, “Local HMI”, LW, 6, 1)

// read total 20 word data, and save in variables f[0]~f[9]
// note：the type of f[10] is int
// f[0] save the data of LW0~LW1，f[1] save the data of LW2~LW3，the rest may
be deduced by analogy, GetData (f[0], “Local HMI”, LW, 0, 10)

// read one float data from LW2, size is double word，and save in the variable f

49

GetData(f, “Local HMI”, LW, 2, 1)

2. SetData (Supported data types: DestData，

char* szPLCName，
 char* szDeviceType，
 int nAddress,
 int nDataCount)

Description
 Send data to PLC, data can be inputted by filling a dialog.
Parameters：
 DestData The address of data to set
 szPLCName PLC Name
 szDeviceType PLCtype and encoding method of PLC address
 nAddress The address of PLC
 nDataCount Number of data
Return value
 None

For example:

int i
bool a = True
bool b[30]
short c = False
short d[50]
int e = 5
int f[10]

for i = 0 to 29
b[i] = true
next i

for i = 0 to 49
d[i] = i * 2
next i

50

for i = 0 to 9
f [i] = i * 3
next i

// set the state of LB2
SetData(a, “Local HMI”, LB, 2, 1)

// set states of LB0~ LB29
SetData(b[0], “Local HMI”, LB, 0, 30)

// set the data of LW2
SetData(c, “Local HMI”, LW, 2, 1)

// set datas of LW0~LW49
SetData(d[0], “Local HMI”, LW, 0, 50)

// set the data of LW6~LW7
// note：the type of e is int
SetData(e, “Local HMI”, LW, 6, 1)

// set datas of LW0~LW19
SetData(f[0], “Local HMI”, LW, 0, 10)

51

 Macro operation manual

1. Macro programming can be divided into three steps:
 Step 1：click the first icon in the Macro tool box of EasyBuilder 8000

Step 2： Each Macro can be copied, deleted or edited in MacroControlDlg
dialog. The source code of Macro can be edited by opening
MacroWorkSpaceDlg dialog.

Step 3: Editing the source code of the Macro. Make sure the name and number of
the Macro are correct. Compile the Macro and fix the error message.

52

2. Editing the communication source code of Macro:

a. Input
Step 1：Enter the keyword “Insert” in the proper position. Or by moving the
cursor to the proper position and push [PLC API] button.It will appear a dialogue
as follows.

53

Step 2：Select functions and parameters of the library in Library Editing Dialog.
Push button “OK” to enter this sub-function; push button “Cancel” to abort this
sub-function.

b. Edit
Move the cursor onto the modifying position to modify it.

c. Delete

 Highlight the selected function and push the button “Delete” to delete it.

54

3. Trigger condition of Macro
The objects of Set Bit, Toggle Switch, Function Key and PLC Control can be
used to trig Macro, The following text show how to trigger macro by use PLC
Control object.

Step 1： Select control type to “Execute Macro Program” in the object property
dialog of PlcControl.

Step 2：Select a Macro name and define a trigger condition in the object
property dialog PlcControl(Now it is LB1).

55

 Some notes about using Macro
 1. Limitation of storage space of Macro
 The size of a Macro in a xob file is limited by the storage capacity. The
maximum storage space of local variables in a Macro is 4K bytes. So the define range
of different variable types are limited as following:

char a[4096]
bool b[4096]
short c[2048]
int d[1024]
float e[1024]

 2. Limitation of maximum lines of Macro to execute
 There are at most 255 Macros in a xob file.

 3. Macro operation may cause deadlock of the MT8000.
 When there is a infinite loop in a Macro without communicating with PLC
 When the size of array exceeds the storage space in a Macro.

 4. The Limitation of communication speed of Macro
 The execution of Macro may be slow down when communicating with PLC.
 This is caused by the data transferring time. Avoid too many complicated action
in the Macro.

56

 Compiler error message
 1. Error message format:

 error C# : error description
 # is the error number.

 Example: error C37 : undeclared identifier : i

 When there are compile errors, the error description can be referenced by
the compile error message number.

 2：Error description
 (C1) syntax error：’identifier’
 There are many possibilities to cause compiler error.

 For example:

 macro_command main()
 char i, 123xyz //this is an unsupported variable name ,”Error message: “Syntax
 error: 123xyz”
 end macro_command

 (C2) ‘identifier’ used without having been initialized
 Macro just support static array, must define the size of an array during
declaration.

 For example：

 macro_command main()
 char i
 int g[i] // i used without having been initialized
 end macro_command

 (C3) redefinition error : ‘identifier’
 The name of variable and function within its scope must be unique.

57

 For example：

 macro_command main()
 int g[10]，g //error
 end macro_command

 (C4) function name error : ‘identifier’
 reserved keywords and constant can not be the name of a function

 For example：

 sub int if() // error

(C5) parentheses have not come in pairs
 Statement missing “(“ or “)”

 For example：

 macro_command main)// missing C

(C6) illegal expression without matching ‘if’
 Missing expression in If statement

(C7) illegal expression (no ‘then’) without matching ‘if’
 Missing “Then” in If statement

(C8) illegal expression (no ‘end if’)
 Missing “EndIf”

(C9) illegal ‘end if’ without matching ‘if’
 Unfinished “If’ statement before “End If”

(C10) illegal ‘else’
 The format of “If” statement is:
 If [logic expression] Then

 [Else [If [logic expression] Then]]

58

 EndIf

 Any format other than this format will cause compile error.

(C11) ‘case’ expression not constant
 There should be constant behind “Case”

(C12) ‘select’ statement contains no ‘case’
 Missing “Case” behind “Select”

(C13) illegal expression without matching ‘select case’
 Missing “expression” behind “Select Case”

(C14) ‘select’ statement contains no ‘end select’
 "Missing “End Select” statement

(C15) illegal ‘case’
 Illegal “Case” statement"

(C16) illegal expression (no 'select') without matching ‘end select’
 The format of “Select Case” statement is:
 Select Case [expression]

Case [constant]

Case [constant]

Case [constant]

Case Else

End Select

Any format other than this format will cause compile error.

(C17) illegal expression (no 'for') without matching ‘next’
 “For” statement error: missing “For” before “Next”

59

(C18) illegal variable type (not interger or char)
 Should be integer of char variable

(C19) variable type error
 Missing assign statement

(C20) must be key word ‘to’ or ‘down’
 Missing keyword “to” or “down”

(C21) illegal expression (no 'next')

The format of “For” statement is:
For [variable] = [initial value] To [end value] [Step]

Next [variable]
Any format other than this format will cause compile error.

(C22) ‘wend’ statement contains no ‘while’

 “While” statement error: missing “While” before “Wend”

(C23) illegal expression without matching ‘wend’

The format of “While” statement is:
 While [logic expression]

 Wend
Any format other than this format will cause compile error.

(C24) syntax error : ‘break’
 “Break” statement can only be used in “For”, “While”, or “Select Case”
statement

“Break” statement takes one line of Macro.

(C25) syntax error : ‘continue’
“Continue” statement can only be used in “For” statement, or “While” statement
“Continue” statement takes one line of Macro.

60

(C26) syntax error
 expression is error.

(C27) syntax error
The mismatch of operation object in expression cause compile error.

 For example：

 macro_command main()
 int a, b

 for a = 0 to 2
 b = 4 + xyz //illegal operation object
 next a
 end macro_command

(C28) must be ‘macro_command’
 There must be ’macro_command’

(C29) must be key word ‘Sub’

The format of function declaration is:

 sub [data type] function_name(…)
 ………..
 end sub

 For example::

 sub int pow(int exp)
 …….
 end sub

 Any format other than this format will cause compile error.

(C30) number of parameters is incorrect
 Mismatch of the number of parameters

(C31) parameter type is incorrect

61

Mismatch of data type of parameter

(C32) variable is incorrect
The parameters of a function must be equivalent to the arguments passing to a
function to avoid compile error.

(C33) function name : undeclared function

 Undefined function

(C34) expected constant expression
 Illegal member of array

(C35) invalid array declaration
 Illegal definition of array

(C36) array index error
 Illegal index of array

(C37) undeclared identifier : i ‘identifier’
Any variable or function should be declared before use.

(C38) PLC encoding method is not supported
The parameter of GetData(…) , SetData(…) should be legal PLC address.

(C39) ‘idenifier’ must be integer, char or constant

 The format of array is:
Declaration: array_name[constant] (constant is the size of the array)
Usage: array_name[integer, character or constant]
Any format other than this format will cause compile error.

(C40) execution syntax should not exist before variable declaration or constant
 definition

For example :
Macro_Command main()
int a, b
For a = 0 To 2

62

 b = 4 + a
int h , k
//declaration statement position error//
Next a
End Macro_Command

(C41) float variables cannot be contained in shift calculation

 Floating point can not bitwise shift

(C42) function must return a value
 Missing function return value

(C43) function should not return a value
 Function can not return a value

(C44) float variables cannot be contained in calculation
 Illegal Float data type in expression

(C45) PLC address error
 Error PLC address

(C46) array size overflow (max. 4k)
 Stack can not exceed 4k bytes

(C47) macro command entry function is not only one
 Only one main entrance in the Macro is allowed

(C48) macro command entry function must be only one

The only one main entrance of Macro is:
Macro_Command function_name()

End Macro_Command

(C49) a extended addresse's station no. must be between 0 and 255

For example:

63

 SetData(bits[0] , “PLC 1”, LB , 300#123, 100)
 300#123 中的 300 means the station no is 300，but the maximum is 255

(C50) a invalid PLC name
 PLC name is not included in the Device List of system paramter
 For example:

 SetData(bits[0] , “PLC 1”, LB , 300#123, 100)

 There is no “PLC 1” in Device List.

(C51) macro command do not control a remote device
 Macro just can control local machine
 For example

 SetData(bits[0] , “PLC 1”, LB , 300#123, 100)

 “PLC 1“ is connected with the remote device ,so it is can not work.

64

 Example source code

1:”For” statement and other expressions (arithmetic, bitwise shift, logic and
comparison)

 macro_command main()
 int a[10], b[10], i

 b[0]= (400 + 400 << 2) / 401
 b[1]= 22 *2 - 30 % 7
 b[2]= 111 >> 2
 b[3]= 403 > 9 + 3 >= 9 + 3 < 4 + 3 <= 8 + 8 == 8
 b[4]= not 8 + 1 and 2 + 1 or 0 + 1 xor 2
 b[5]= 405 and 3 and not 0
 b[6]= 8 & 4 + 4 & 4 + 8 | 4 + 8 ^ 4
 b[7]= 6 – (~4)
 b[8]= 0x11
 b[9]= 409

 for i = 0 to 4 step 1
 if (a[0] == 400) then
 GetData(a[0],”Device 1”, 3x, 0,9)
 GetData(b[0],”Device 1”, 3x, 11,10)
 end If
 next i
 end macro_command

2: while, if, break

 macro_command main()
 int b[10], i
 i = 5
 while i == 5 - 20 % 3
 GetData(b[1], ”Device 1”, 3x, 11, 1)

 if b[1] == 100 then
 break
 end if

65

 wend
 end macro_command

3: Global variables and function call

 char g

 sub int fun(int j, int k)
 int y

 SetData(j, “Local HMI”, LB, 14, 1)
 GetData(y, “Local HMI”, LB, 15, 1)
 g = y

 return y
 end Sub

 macro_command main()
 int a, b, i

 a = 2
 b = 3
 i = fun(a, b)
 SetData(i, “Local HMI”, LB, 16, 1)
 end macro_command

4. ”If” statement

 macro_command main()
 int k[10], j

 for j = 0 to 10
 k[j] = j
 next j

 if k[0] == 0 then
 SetData(k[1], “Device 1”, 3x, 0, 1)
 end if

66

 if k[0] == 0 then
 SetData(k[1], “Device 1”, 3x, 0, 1)
 else
 SetData(k[2], “Device 1”, 3x, 0, 1)
 end if

 if k[0] == 0 then
 SetData(k[1], “Device 1”, 3x, 1, 1)
 else if k[2] == 1 then
 SetData(k[3], “Device 1”, 3x, 2, 1)
 end If

 if k[0] == 0 then
 SetData(k[1], “Device 1”, 3x, 3, 1)
 else if k[2] == 2 then
 SetData(k[3], “Device 1”, 3x, 4, 1)
 else
 SetData(k[4], 3x_BIN, 5, 1)
 end If
 end macro_command

5. while statement

 macro_command main()
 char i = 0
 int a[13], b[14], c = 4848

 b[0] = 13

 while b[0]
 a[i] = 20 + i * 10

 if a[i] == 120 then
 c =200
 break
 end if

67

 i = i + 1
 wend

 SetData(c, “Device 1”, 3x, 2, 1)
 end macro_command

6. break、continue statement

 macro_command main()
 char i = 0
 int a[13], b[14], c = 4848

 b[0] = 13

 while b[0]
 a[i] = 20 + i * 10

 if a[i] == 120 then
 c =200
 i = i + 1
 continue
 end if

 i = i + 1

 if c == 200 then
 SetData(c, “Device 1”, 3x, 2, 1)
 break
 end if
 wend
 end macro_command

7. array statement

 macro_command main()
 int a[25], b[25], i

 b[0] = 13

68

 for i = 0 to b[0] step 1
 a[i] = 20 + i * 10
 next i

 SetData(a[0], “Device 1”, 3x, 0, 13)
 end macro_command

